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ON BOATTATI, BODIES OF REVOLUTION HAVING MINIMUM WAVE DRAG

By Keith C. Harder and Conrad Rennemenn, dJr.
SUMMARY

The problem of determining the shape of slender boattail bodies of
revolution for minimum wave drag has been reexamined. It was found that
minimum solutions for Ward's slender-body drag equation can exist only
for the restricted class of bodies for which the rate of change of cross-
sectional area at the base is zero. In order to eliminate this restric-
tion, certain higher order terms must be retained in the drag equation
and isoperimetric relations. The minimum problem for the isoperimetric
conditions of given length, volume, and base area is treated as an example.
According to Ward's drag equation, the resulting body shapes have slightly
less drag than those determined by previous investigators.

JNTRODUCTION

An approximate expression for the wave drag of slender bodies of
revolution having zero rate of change of cross-sectional area at the
base was first given by Von Karmén (ref. 1). By using this expression,
together with the calculus of variations, several investigators (refs. 1
to 3) have determined minimum-wave-drag bodies for various isoperimetric
conditions. Later, Ward (ref. 4) derived the slender-body approximation
for the drag of bodies with a nonzero rate of change of cross-sectional
area at the base.

In reference 5, Adams considered several minimum-wave-drag problems
on the basis of Ward's equation. In each case he concluded that the
minimimm~drag body had zero slope at the base. This conclusion implied
thet the minimum shapes for Ward's equeation are the same as those for
Von Kérmdn's. Recently, Parker (ref. 6) presented a different expression
for the wave drag of slender bodlies and showed that the optimum body
having given length and base area has a finite slope at the base. Clearly,
this result is not in sgreement with that obtalned by Adams.

In the present paper, the problem of determining minimum-drag boat-
tail bodies of revolution on the basis of linear theory is reexamined
with particular emphasis on the choice of drag equation, isoperimetric
relations, and method of calculating the body shape. The minimum problem
for the isoperimetric conditions of given length, volume, and base. area
is treated as an example.
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DISCUSSION OF MINIMUM-WAVE-DRAG PROBLEM

Within the approximations of linear theory, the supersonic flow
past slender bodies of revolution can be represented by a distribution
of sources along the axis of the body. The wave drag D of the body
may be related to the source distribution (ref. 1) by

1 1 '
LD _ 1 1 -
;_._ _L L £ (x)f (g)logelx - E,Id.x at (1)

provided the source distribution f(x) is zero at the nose and the base
(i.e., £(0) = £(1) = 0) where p. is the streem density and U is the
stream velocity. The coordinate system is shown in the following sketch:

R(x)

In the slender-body approximation, the source strength is related to the

.body cross-sectional-area distribution A(x) by

£(x) = —= &tR(X)R'(X)‘ 4 (2)

ge

and the restriction that £(1) = 0 dimplies that either the body is
closed (R(1) = 0) or that the body has zero slope at the base
(R'(1) = 0). _
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Several investigators (refs. 1 to 3) have determined minimm-wave-
drag bodies for various isoperimetric conditions by applying the calculus
of variations to equation (1). However, as a result of the restriction
that f£(1) = 0, these shapes can be considered optimum only for the
restricted class of bodies having zero rate of change of cross-sectional
area at the base. :

Ward's Drag Equation

An equation which does not have the restriction that #£(1) = 0 was
proposed by Ward (ref. 4) on the basis of slender-body theory as

11
:‘“_UQE= -fo fo f'(x)f'(g)logelx - gld.x ae +

1 |
2£(1) | £'(8)loge(? « £)dE - £2(1)1og, PR (3)
0 2

where B =\/M2 -1 and M 1is the Mach number. The source strength is
again related to the body geometry by equation (2).

The problem of determining the source distribution which minimigzes
the drag given by equation (3) for given isoperimetric conditions without
specifying the value of £(1) at the outset is a variable end-point prob-
lem of the calculus of variations. 1In appendix A this problem is consid-
ered for a general type of isoperimetric condition where it is shown that,
if a mathematical minimum exists, it satisfies the condition £(1) = O.
The significance of the mathematical solution obtained by the variational
procedure warrants further consideration since the variational procedure
agsumes the existence of a solution at the outset and, consequently, can
lead only to necessary conditions for the attainment of an extremum.

Three mutually exclusive possibilities must be considered:

(1) A minimum for Ward's equation exists for the class of bodies
having all values of the slope at the base and satisfies the condition
£(1) = 0.

(2) A minimum for Werd's equation exists only for the restricted
class of bodies for which #£(1) = O.

(3) No minimum exists for Werd's equation.
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A single example, not satisfying the condition #£(1) = 0 but having
less drag than the shape obtained by the variational procedure, is suffi-
clent to eliminate the first possibility. Perhaps the simplest example
is the cone which, for given length and base area, has less drag than the

variational minimum (Von Kérmén's ogive) for B I}_(le 2 0.164. However,

‘e more illuminating example is given by the body

1
Alx) = A(2) —|x + (' - x)logg (1l - X (0=xs51) (&)
1+ € logg — ' 1!
Zl
where A(1) is the base area, 1' =1+ ¢, and € is a parameter related

to the slope at the base R'(1) by

. R(1)loge L-
R'(2) =

2(7, + € logy f.;)
7

For this body, Ward's equation (eq. (3)) gives the result that, for
small e,

2 2
bzD _ A1) -l (loge _e_) log, BR(1) (‘L_’_>2/3 ‘o e/l
1!

pU2 1 + € loge -G—‘J 21" \® loge =
1

Zl

which approaches minus infinity as € approaches zero; that is, as the
slope and curvature at the base both approach infinity. (The mathemetical
symbol O( ) defines the order of a function.) The body shaepe for € = 0
is shown in the following sketch:
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In order to decide between the second and third possibilities, it
would be necessary to prove the existence or nonexistence of a minimum
solution for Von Kérmin's drag equation (eq. (1)). Such a study is beyond
the scope of the present paper; however, it should be noted that the min-
imum solutions obtained for Von KArmén's equation have provided a useful
guide in the search for low-drag shapes. It is in this same vein that,
later in the peper, minimum problems are considered on the basis of a
different drag equation. Since existence proofs are not attempted, the
most that can be claimed is that, if a solution exists, it must have a
certain mathematical form. However, in order to avoid the repetition
of this qualifying remark in the remainder of the paper, solutions
obtained by the calculus of veriations are referred to as minimum
solutions.

The problem under discussion has been previously considered by Adams
(ref. 5) wko correctly determined the necessary conditions for a minimum.
His interpretation of these conditions was that the optimum boattail body
has zero rate of change of cross-sectional ares at the base. However,
the proper interpretation is that, if a minimum exists, it exists only
for the restricted class of bodies having zero rate of change of cross-
sectional area at the base.

Parker's Drag Equation

From the preceding discussion, it is clear that Ward's drag equa-
tion (eq. (3)) cannot be used to determine minimm-drag boattail bodies.d
Parker (ref. 6) has shown that application of the calculus of variations
to the dreg equation

1Essentially the same arguments can be used to show that Lighthill's
drag equation (ref. 7), which was derived for slender shapes with discon-
tinuities in slope, cannot be used to determine minimum-drag bodies with
corners.
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1} (2 - 8)(2 - x) - BER2(1)
BR(1)(x - &)

£'(e)£'(x)cosh™

1-pR(1)  1-pR(1)
baD _ u/\ dx ag
0

pU2 0
(5)

which he obtained on the basis of linear theory, yields a minimum without
the restriction that #£(1) = 0 for the isoperimetric conditions of given
length and base area. The body shape so determined has a finite slope at
the base end less drag than the mathematical minimm for equation (3).

Equation (5) contains some higher order terms which are not included
in the slender-body approximation to the drag (eq. (3)) since Parker did
not make the slender-body approximstion to the wvelocity potential in the
derivation. Apparently, the additional terms are necessary in order to
obtain minimm-drag shapes without the restriction that f£(1) = 0. How-
ever, it should not be inferred that equation (5) necessarily gives a
better estimate of the drag of bodies satisfying the assumptions of
slender-body theory than equation (3). Lighthill (ref. 8) has shown
that the slender-body equations (egqs. (2) and (3)) are fully as accurate
as the linearized differential equations of motion for sufficiently smooth
bodies. Consequently, the slender-body results are theoretically equiv-
alent to those obtained without meking the slender-body approximation.

Isoperimetric Conditions

The isoperimetric conditions most commonly considered have been
those of fixed length, volume, and base area. In order to carry out the
methematical details of determining the source strength which minimizes
the drag, the isoperimetric conditions must be directly related to the
source strength. The simplest relations would appear to be those given
by slender-body theory. However, in order to caerry out the analysis on
the basis of -Parker's equation, certain higher order terms must be
retained in the isoperimetric relations. In particuler, the limits of
integration in the isoperimetric relations must be the same as those in
the drag equation. Furthermore, the analysis cen sometimes be simplified
by including certain additional higher order terms in the integrand of
the isoperimetric relations.

The relation between the isoperimetric conditions and source strength
used in the example to be treated in the present peper is obtained by
approximately satisfying the boundary conditions on a cone passing through
the nose and base. The linear-theory expression, for A'(x) is
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() = f"‘ﬂr (x - £)£'(e)at 6)
0 \/(x - £)2 - p2r2

where r 1is on the body surface. Equation (6) is approximately satisfied

by evaluating the integral on the cone r = R(l)%. Then,

X |1-B R-—— _ 1
A (x) = f 3 (x - £)£'(e)ae )
1

R(1
from which, with & =8 —Sfly

x(1-8)
A(x) = /; f'(e)\/(x - £)2 - 572

and

1(1-8)
AQY) = fo f'(e)\/(z - £)2 - 5212 a¢ (8)

where use has been made of the condition £(0)
volume V is glven approximetely by

0. Similarly, the

1(1-8)
~ l _ t _ 2 _ &2
v~z fo (1 - &)t (.s.)\/(z )< - 512 dg (9)

In the derivation of equations (8) and (9) from equation (7), terms of
the order of Szlogea have been neglected. The slender-body approxi-

mation to the isoperimetric relations is obtained by equating & +to zero
in equations (8) and (9).
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Calculation of Body Shape

When the calculus of variations is applied to the drag equation and
isoperimetric relations, the resulting source strength for minimum drag
contains several constants to be determined from the isoperimetric con-
ditions. The calculation of these constants and the body shape can be
treated independently of the minimization process.

Since higher order terms have been retained in the drag equation
and isoperimetric relations, the question arises as to whether similar
terms should be retained in the body-shape calculation. Theoretically,
the inclusion of these terms does not affect the accuracy of the result
for shapes satisfying the assumptions of slender-body theory. Even so,
it is interesting to compare the various body shapes obtained from the
source distribution

£(e) = K\/g [2 + BR(D) - ¢ (10)

found by Parker to give minimum drag for the isoperimetric conditions of
given length and base area. In equation (10), K is a constant to be
determined from the isoperimetric conditions. The numerical value of K
depends on the method used to calculate the body shape.

Parker calculated the body shape from this source distribution with-
out making the slender-body approximation by numerically solving the
integral equation

x-BR(x)
7R2(x) = fo e f'(g)\/(x - £)2 - B2R2(x) at (11)

The body shape calculated from equation (10) by means of the slender-body
expression A'(x) = £(x) is

Alx) = ——-Elg-——-t‘/l - t2 + cos™1(-t) (-L£t £ e) (12)

2(1 + ¢)?
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where

x_ 1+t K1°  _ A(1) o - 1-BR(1)
2

1 l+c . 2(1+c) /1 - 2 + cos~1(<c) 1+ BR(1)

When the expression A'(x) = £(x) is altered to teke partially into
account the fact that a given point on the body is influenced only by
sourcee in the upstream Mach cone by equating

dx

ax) _ ¢ x[l-sﬁzﬂ} (13)

the body shape is given by

2
Alx) = —EF 4 /1 - 2 + cosI(-t) (-1St<2e -1) (k)
he(d + )
where
t = EJ_{. - 1
1
12K A(1)

be(l+ o) oipe - 1)\/;(_1_.::‘) + cos™H(1 - 2¢)

The body shapes calculated by means of equations (11), (12), and (14)

R(1 :
for B -(7,_) = 0.2 are compared in figure 1. The differences between the

shapes are small even for this rather large value of B R-lez- For smaller

e e e e e ——————— e et —. —— -~ - ~———— ———— - — -
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R(1)
1

values of B the differences are even less and the shapes become

2

coincident as B B%;l approaches zero. Similar bbdy-shape calculations

based on equations (2) and (13) for the source strength that is derived
in the example (fixed volume, length, and .base area) were performed for

B §$52.= 0.05 and several values of B2 j%; where V 1is the volume.
) - 1

This comparison is not presented sincé the body shapes obtained by the
two methods are almost identical. Evidently, the difference in body
shape is appreciable only for shapes that cannot be considered slender.
Consequently, the simpler slender-body relation is preferable.

The discussion concerning the inclusion of higher order terms is
briefly summarized as follows: Higher order terms must be retained in
the drsg equation in order to obtain the minimm-drag boattail body;
having done this, higher order terms must also be retained in the iso-
perimetric relations in order to perform the analysis. Once the source
strength for minimm drag has been determined within several undetermined
constants, higher order terms need not be retained in the calculation
of the shape and drag of bodies satisfying the assumptions of slender-

- body theory.

PROBLEM OF LENGTH, VOLWME, AND BASE AREA

The problem of determining the body shape that gives minimum wave
dreg for fixed length, volume, and base area is treated in order to
illustrate the ideas developed in the preceding sections. The minimum-
drag body having given length and base area or given length and volume
can be obtained as special cases of the problem under consideration.

The source distribution for minimum drag is obtained by applying
the calculus of variations to equations (5), (8), and (9), and as shown
in sppendix B, this leads to the source distribution

£(g) = (a + bg)\/g[z - & + pR(2)| (15)

where a and b are constants to be determined from the isoperimetric
conditions.
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As discussed in the previous section, the body shape is determined
on the basis of the slender-body equations. Integration of A'(x) = £(x)
gives

A(x) = (l%)'z{g[‘b\/l - 12+ c'os'l(-'F):I - g(l - t2)3/2

(-1t e) (16)
wﬁere
x_1+% c = L = BR(1) B = 1+ BR(1) 4
1 1+c 1 + BR(1) 2
and

The base area is given by

A1) = _7'2__. é{c\,l - c2 4 cos“.l(—c)] - ]%(l - c2)3/2 (17)

(1 + c)2 2

The volume is obtained from equation (16) as

V= ——23— A[c cos~1(-c) + |1 - <2 - 1 - c2)3/2 - BlZen c2)3/2 +
2(1 + ¢)2 , 3 L3

c\/1 - c2 + cos‘l(—c)J (1.8)
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Equation (16) for A(x) (with the use of egs. (17) and (18)) reduces
to.the minimm-drag body shape given by Haack (ref. 3) and Adems (ref. 5)
when c¢ = 1. In this case, A(x) is given by

Alx) = A(ﬂl) lit\/l.- 2 4 c05'1(-t)} + %[%'i - A(l):, (1 - +2)3/2

1+t
2

¥

This body wes obtained by Haack on the basis of Von Karmén's drag equa-
tion (eq. (1)) and by Adams on the basis of Ward's drag equation end is
referred to in the remainder of the paper as the Haack-Adams body.

The constants A and B in the equation for the body shape
(eq. (16)) are determined from equations (17) and (18) in terms of 1,
B, R(1), and V. The solution may be expressed as

824 = Ay - Agp2 L (20)
13
and
828 = By - Bpp2 L (21)
13

where Ay, Ap, By, and B, ave functions of B R(Y) | Velues of Ay,
2

Ao, Bj, and Bp are given in table I for values of B R_(;L)_ between 0.01
and 0.10.




NACA TN 3478 13

) A direct comparison of the drag of the body of the present paper
with that of the Haack-Adams body is made on the basis of Ward's drag
equation. From equation (3), the drag of the source distribution given
by equation (15) is

1 12 2 ,/ 2
= e — A2c-l_ + 2 1 - ¢2 cos-1(- - - -
[os (c)] c os~1(-c) (1 c<)

(1 + c:)2

D
Sia
4AB(1 - c2) [c +\/1 - c2 cos‘l(-c)] + %E[(E - 5¢2)(1 - ¢2) +

2c\[1 - c2 (2¢2 - 1)cos~1(-c) + (cos-l(-c))2:| +

2(A + Be)3(1 - c2)loge[h(l + c)] (22)

The drag of the Haack-Adams body is

21 A2 '
D _2l 9Agz)+32_v_1_Agz) (23)
U2 d T 33 42
) gk
The form of equations (20), (21), and (22) indicates that 55
pU<1

is a function of 132 13 and B B('L_Z)— In figure 2, the drag of the Haack-
1
Adems body (eq. (23)) and the drag given by equation (22) are plotted on

a logarithmic scale for several values of B B—gzll To help orlient the
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reader, several body shapes are shown for B8 = 1, I—{—(zl)— = 0.05. The drag

given by equation (22) is somewhat less than that of the Haack-Adams body for

most values of B2 -13 For exemple, for 8 R(Z) = 0.05 and B2 % = 0.01,

1 1
which represents a fuselage-type shape, the body given by equation (16)

has approximately "(% percent less drag than the Haack-Adams body. Each

drag curve begins at a particular value of 52 —Yg> 0; for a given value
1

of B R(_LZ) , smaller values of 52 -!5- give rise to negative body areas.
1

For a given value of B 13-(1&, the slope at the base of the body is

positive for small values of B2 13— and is negative for large values.
1
The two drag curves become nearly tangent at intermediate values of

g2 —V—B— for which the body slope at the base is near zero. Actually, the
1

Haack-Adams body must have less drag for this condition since this body

gives minimum drag for Ward's equation for the class of bodies which have

zero slope at the base.

The value of 132 —Vg for minimum drag is obtained, for a given value
1

of B le)_, by equating B to zero in equations (17) and (18). This
procedure gives the optimum body having a given length and base area.
In figure 3 the body shape of the present paper is compared with

the Hasck-Adems body for BR(Z') 0.05 and 52‘;—0003anc1002
1

The bodies are plotted to an expanded vertical scale (expanded 5 times)
to 1llustrate the differences which for the most part are small. The most
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significant difference occurs near the base for the larger values of

p2 175 where the body given by equation (16) does not exhibit the reflex
1

shape of the afterbody characteristic of the Hsack-Adams body.
The effect of Mach number on body shape is illustrated in figure L

where the optimum shapes (vertical scale enlarged 2%'- times) for

B(—-l'ql:)—=0.05 and -%—:0.0E are compared for M=V~E and M=\/_5-. The

1

body shape of the present paper exhibits s small dependence on Mach num-
ber, whereas the Haack-Adams body is independent of Mach number.

CONCLUSIONS

The problem of determining the shape of slender boattall bodies of
revolution for minimum wave drag has been reexamined and the following
conclusions are indicated:

1. Minimum solutions. for Ward's drag equation can exist only for
the restricted class of bodies for which the rate of change of cross-
sectional area at the base is zero.

2. In order to eliminate this restriction, certain higher order
terms must be retained in the drag equation and isoperimetric relations.
However, higher order, terms need not be retained in the calculation of
drag and body shape from the source distribution.

3. Adems in NACA TN 2550 correctly determined the necessary conditions
for a minimum for Ward's drag equation. His interpretation of these con-
ditions was that the optimum boattail body has zero rate of change of
cross-gsectional area at the base. However, the proper interpretation is
that, if a minimum exlsts, it exists only for the restricted class of
bodies having zero rate of change of cross-sectional area at the base.
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4. Application of the ideas expressed in conclusion 2 to the minimum
problem of given length, volume, and base area led to body shapes which
have slightly less drag than the Haack-Adams body.

Langley Aeronautical Laborsatory,
National Advisory Committee for Aeronautics,

Langley Field, Va., June 8, 1955.
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APPENDIX A
APPIICATION OF CALCULUS OF VARTATIONS TO WARD'S DRAG EQUATION

In this appendix the calculus of varistions 1s applied to Ward's
drag equation (eq. (3)) for a general type of isoperimetric condition

to determine the source strength for minimm drag when the source strength

at the base f£(1) is not specified at the outset. From equation (3),
Ward's drag equation is

f f £'(x)£" (§)10ge|x - glax ag +
pU2

1 ,
o) [ £ (002081 - B)as - 2(0)n0me p K ()

The usual isoperimetric conditions considered may‘be related to the
gource strength by expressions of the form

) \
I = fo £(e)e;(8)dg (a2)

For example, g(t) = 1 for fixed base area and g(t) = (1 - £) for
fixed volume. In the subsequent analysis, it is assumed that one of the
isoperimetric conditions is that of fixed base area. This assumption
simplifies the anslysis without restricting its generality.

In the derivation of equation (Al) it is assumed that
£(0) = 0 ' (43)

Equation (A3) gives one of the end-point conditions to be satisfied by
the minimizing source distribution. At the other end point, x = 1, the
value of f£{x) is not prescribed.
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The source distribution for minimm drag is obtained by considering
the variation of the function

LD
J= =224 ) NI (Al)
o2 Z i+

where the Lagrange multipliers Ay are determined from the isoperimetric
conditions. The variation of equation (Ak) is obtained by considering the -
one-parameter family of comparison functions (see ref. 9, for example)

£(x) = F(x) + en(x) (45)

where. F(x) is the function which minimizes equation (AL), e is the

perameter of the family, and 7(x) is an arbitrary function within the
condition

1(0) =0 (A6)

This condition arises since all the comparison functions must satisfy

the same end-point condition as the minimizing function. Since no end-
point condition is prescribed at x =1, 1(1) is arbitrary.

" From equations (A4) and (A5), J 1s a function of e and the source
strength for minimum drag is determined from the condition

1 1
a F(x)dx M
=0 = ‘jp - = \/p bl S i — d
w0 o 1(8) i Jo x-o¢ + 5 gi(e)|ae +

n(1)| 1m F(2)1log, 22 = £)

(AT)
E—>1 BR(1)

where the equation has been simplified by several integrations by parts
and use of equations (A3) and (46).
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, Since equation (A7) must hold for all choices of n1(¢) consistent
with equation (A6), it must in particular hold for those choices of n(E)
for which n(1) = 0. For such n5(&),

'

1 1
fo () —%f F(x)ax , Elgi(g) dt = 0

0 X -¢ 2

and from the basic lemma of the calculus of variations (ref. 8),

a t F(x)dx A
= IARJCS e ] 8
> h/; — > gi(t) (A8)

With this result, and for general n(t) once again, that is, 7(1) not
necessarily equal to zero, the end-point condition obtained is that

2(1 - &) | _
;,i;n;l F(1)log, O (49)

In order to satisfy this condition, F(1) must equal zero. Consequently,
the body shapes which give a mathematical minimum for Ward's equation,

if they exist, must have zero rate of change of cross-sectional area at
the base.
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APPENDIX B

APPLICATION OF CALCULUS OF VARTATTIONS

TO PARKER'S DRAG EQUATION

The source distribution for minimum drag for the isoperimetric con-
dition of given length, volume, and base area is obtained by considering
the variation of the function

J = YD + MAT) + NV (B1)

p

where D, A(1), and V are given by equations (5), (8), and (9), respec-
tively, and Ay and Ao are Lagrange multipliers. By proceeding in the

same manner as in appendix A, the variation of equation (B1) is obtained
by considering the one-parameter family of comparison functions

£(x) = F(x) + en(x) (B2)

where F(x) 1is the function which minimizes equation (Bl), e is the
parameter of the family, and n(x) is an arbitrary fu.nction within the
condition 7(0) =

The source strength for minimum drag is then determined from the
condition

a R g | PR o V- g2 - gy N
;lm”“'L A2 f e ax+ [+ 220 - |\ - 02 - () e
Vi - )2 - g282(2)

1-gR(1) \[( ﬂ E ( )
n(1 - g8(1)) im f Bx)_ NG - (1) gy 4 [x1+ 2. ;)]\/(1 - 52 - p%2(1) (83)
£—1-pR(1) 0

7t - 02 - g2
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where the equation has been simplified by several integrations by parts
end use of the conditions

l.‘

F(0) = n(0) =0

Since equation (B3) must hold for all choices of n(£) consistent
with 7(0) = 0, it must in particular hold for those choices of 7(&)

for which nl} - BR(ZB = 0. For such n(e),

fl-BR(l) " 2/“‘3“) ) N - 6)2 - p2Re(1) ax +
0 a1 Yo x5 \/(7, - x)2 - p2R2(1)

Ao 2
[?\1 + 2 - g)} \/(1 - £)° - g2%R2(1) pag = 0

and from the basic lemma of the calculus of variations,

[P 2 -8 - g
° 75 - 02 - 2R

[7\1 + 523(1 - g)} %z - £)% - B2R2(1) = N (BY)

where N is a constant. With this result, and for general n(t), the
end-point condition is obtained as
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Lim zfz"BR(” P VG - 92 - g2
£E——1-pR(1) 0 x - & \/(1 _ x)2 - p2R2(1)
[7\1 * 7\?2(1 : g)]\ﬂz - 6)% - p2R2(1) p = 0 (85)

Since equation (BY) must hold for all values of ¢, and in particular

for &—>1 - BR(1l), from equation (B5), N = O. Hence, \/(1 - §)2 - B2R2(1)
can be canceled from each term of equation (B4) and the following integral
equation is obtained for the source strength:

1-BR(2 ’
2/\ BR(2) g(x) ax = - 7%‘?_(7, -t)  (B6)
0 x - £ \/(7, - x)2 - B2R2(1)

The solution of equation (B6) satisfying the condition F(0) = 0 is

F(¢) = £(g) = (a + bg)\/g [z - £+ sR(Z)] (BT)

vhere a and b are constants related to Ay and Ap.



NACA TN 3478 23

1.

3.

REFERENCES

Von Kérmé.n,- Th.: The Problem of Resistance in Compressible Fluids.
R. Accad. d'Ttalia, Cl. Sci. Fis<, Mat. e Nat., vol. XIV, 1936.
(Fifth Volta Congress held in Rome, Sept. 30 - Oct..6, 1935.)

. Sears, William R.: On Projectiles of Minimum Wave Drag. Quarterly

Appl. Math., vol. IV, no. 4, Jan. 1947, pp. 361-366.

Haack, W.: ProjJectile Shapes for Smallest Wave Drag: Translation
No. A9-T-3, Contract W33-038-ac-15004(16351), ATI No. 27736, Air
Materiel Command, U. S. Air Force, Brown Univ., 1948.

. Ward, G. N.: Supersonic Flow Past Slender Pointed Bodies. Quarterly

Jour. Mech. and Appl. Math., vol. II, pt. 1, Mar. 1949, pp. 75-97.

. Adems, Mac C.: Determination of Shapes of Boattail Bodies of Revolu-

tion for Minimum Wave Drag. NACA TN 2550, 1951.

. Parker, Hermon M.: Minimum-Drag Ducted and Pointed Bodies of Revolu-

tion Based on Linearized Supersonic Theory. NACA TN 3189, 1954.

Lighthill, M. J.: Supersonic Flow Past Slender Bodies of Revolution
the Slope of Whose Meridian Section Is Discontinuous. Quarterly
Jour. Mech. and Appl. Math., vol. I, pt. 1, Mar. 1948, pp. 90-102.

. Lighthill, M. J.: Supersonic Flow Past Bodies of Revolution. R. & M.

No. 2003, British A.R.C., 1945.

. Weinstock, Robert: Calculus of Variations. First ed., McGraw-Hill

Book Co., Inc., 1952.




ok NACA TN 3478
TABRLE I
COEFFICIENTS OF EQUATIONS (20) AND (21)
BeA = Ay - App° 3% B2B = By - Bgﬁz 3%
p ML ) (eq. (20)) (eq. (21))
Ay Ap By Bo
0.10 0.080572 0.76164 0.26804 18.0291
.09 .064852 .6685L .21938 18.1466
.08 .050946 .57666 17531 18.2780
.07 .038807 .486LL .13590 18.4255
.06 .028%90 .39843 .10121 18.5919
.05 .019652 .31338 .071357 18.7809
o) .012554 .23231 .OL6hy3 18.9973
.03 .00T0607 .15669 .026623% 19.2482
.02 .00%31450 .0888L43 .012091 19.5439
.01 .00079066 .032849 .0031002 19.8686
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(x)
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Parker (eq. (11))
Sk “—— ——— GSlender body (eq. (12))
= — — — Modified slender body (eq. (L4))

BR

Radius parameter,

Axial coordinats, x/1

Figure 1.~ Comparison of body shapes calculated from source distribution
given by equetion (10) by various methods for P #2- = 0.2.
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Figure 2.- Comparison of drag given by Ward's equation for Haack-Adams
body and body given by equation (22). Body shapes shown are for

R(1)
-T- = 0.05.
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Axinl coordinate, x/i

Flgure 3.- Comparison of Hamck-Adems body with that given by equation {22)

for B8 R—(IQ = 0.05.
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Figure 4.- Effect'of Mach number on body shape given by equation (22)

for 15=o.02 and ﬂ#:o.oi
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